a2 United States Patent

Diewald et al.

US009342312B2

10) Patent No.: US 9,342,312 B2
(45) Date of Patent: May 17, 2016

(54) PROCESSOR WITH INTER-EXECUTION
UNIT INSTRUCTION ISSUE

(71) Applicant: TEXAS INSTRUMENTS
DEUTSCHLAND GMBH, Freising
(DE)

(72) Inventors: Horst Diewald, Freising (DE); Johann
Zipperer, Unterschleissheim (DE)

(73) Assignee: TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 447 days.

(21) Appl. No.: 13/917,811

(22) Filed: Jun. 14,2013

(65) Prior Publication Data
US 2014/0372733 Al Dec. 18, 2014

(51) Int.CL

GOGF 9/32 (2006.01)
GOGF 9/38 (2006.01)
(52) US.CL
CPC ... GOGF 9/3808 (2013.01); GOGF 9/3814

(2013.01); GOGF 9/3828 (2013.01); GO6F
9/3836 (2013.01); GOGF 9/3853 (2013.01);
GOGF 9/3867 (2013.01); GOGF 9/3895
(2013.01)

(58) Field of Classification Search
CPC oottt GOG6F 9/32
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,756,404 B2* 6/2014 Luickccoooein. GOG6F 9/3001
712/214

* cited by examiner

Primary Examiner — Cheng-Yuan Tseng

(74) Attorney, Agent, or Firm — John R. Pessetto; Frank D.
Cimino

(57) ABSTRACT

A processor includes an instruction storage memory, a pro-
cessor core, and an instruction merge unit. The processor core
includes a plurality of execution units coupled to the instruc-
tion storage memory. A first of the execution units is config-
ured to execute instructions provided from the instruction
storage memory via a first instruction path, and to execute
instructions provided by a second of the execution units via a
second instruction path. The second of the execution units is
configured to execute instructions provided from the instruc-
tion storage memory, and to provide instructions for execu-
tion to the first of the execution units via the second instruc-
tion path. The instruction merge unit is configured to merge
the instructions provided via the first and second instruction
paths into a stream of instructions to be executed by the first
execution unit.

22 Claims, 5 Drawing Sheets

EU ISSUES BASIC/CORE INSTRUCTIONS

FETCH INSTRUCTIONS INSTRUCTIONS INSTRUCTIONS
(BY FETCH UNIT) EXECUTED BY EU 102 EXECUTED BY EU 104
Instr_m1 Instr_m1
Insfr_m2 Instr_m2
Instr_m3 Instr_m3
instr_m4 Instr_m4
X EU_lnztr nt EU_Instr_nt
| Instr_m8_EU EU_lnstr_n1.1
: Insfs_m6_EU EY_Instr_n1.2
! Instr_pr7_EU EU_instr_n13
| Instr_m8_EU EU_Instr_nt.4
: EU_insir_n2 EU_instr_nt.8
! Instr_m9_EU EU_Instr_nt6
: instr_m10_EU EU_lnstr_nt.7
| —
| Instr_m5_EU
: Instr_mg_EU
I Instr_m7_EU
| FETCH INSTRUCTIONS Instr_m8_EU
: I
|
|
|

TOFIG. 4B

U.S. Patent May 17, 2016 Sheet 1 of 5 US 9,342,312 B2
100
\\
102 104 106 108
N\ N / ¢
EXECUTION EXECUTION EXECUTION EXECUTION
UNIT UNIT UNIT UNIT
& & & & & & & 3
¥ ¥ ¥ ¥
114 4 114
\ $ /
INSTRUCTION INSTRUCTION | 114 INSTRUCTION
DECODE UNIT DECODE UNIT DECODE UNIT
& & %
INSTRUCTION INSTRUCTION
BUFFER | 1186 BUFFER
¢ R
i 116
INSTRUCTION DATA _
FETCH UNIT ACOESS UNIT FI1G. 1
7 /
110 112
108
N 202
{
-« = FUNCTION
INSTRUCTION g p—
INSTRUCTIONS ™1 EXECUTION LOGIC ‘
m -4
o | REGISTERS
STORED
DATA
DATA —— e \ f'2ﬁ4
: o
212 208 306
N\
= ; ® STATUS
PROCESSOR - = REGISTERS
RESOURCES REb@Uch CONTROL
714 FiG. 2

U.S. Patent May 17, 2016 Sheet 2 of 5 US 9,342,312 B2
300
INSTRUCTION SoC1 @R @RalEud >
B k-bits .
. n-bifs | p-bits m-bits
SR
LD {8eetl | Rs | Rd EUIA |
FIG. 3
102 1@4
\..\ }"'
EXECUTION UNIT EXECUTION UNIT
202 - 202
™ FUNCTION LOGIC w\><://w FUNCTION LOGIC 3
o BN
i REGISTERS REGISTERS
2047 = = - 204
FIG. 5
FROM
INSTRUCTION
MEMORY
! !
110~ INSTRUCTION
FETCH UNIT EXECUTION
% UNIT
INSTRUCTION
A STORED 404
114 DECODE UNIT INSTRUCTIONS
Y S
102 - EXECUTION UNIT 212

FIG. 6

U.S. Patent May 17, 2016 Sheet 3 of 5 US 9,342,312 B2
FIG. 4A
EU ISSUES BASIC/CORE INSTRUCTIONS
FETCH INSTRUCTIONS INSTRUCTIONS INSTRUCTIONS
{BY FETCH UNIT) EXECUTED BY EU 102 EXECUTED BY EU104
instr_m1 instr_mf
inslr_m? nstr_m?
Insir_m3 Instr_m3
instr_m4 Inste_md
T EU nstr_ni EU Instr nt
| instr_m5_EU EU_instr n1.4
: insty_m6_EU EU_lnstr n1.2
2 insty_m?7_EU EU Inslr nt13
I Instr_m8_EU EU_lnstr_n1.4
; EU instr_n2 EU lnstr nl5
i instr_m8 _EU EU st n16
: Instr_m10_EU EU_lnstr_n1.7
| 3
| Y
l instr_m&_EU
: instr_m&_EU
: ingtr m7_EU
| FETCH INSTRUCTIONS Instr_m8_EU
| |
|
|
|

TOFIG. 4B

U.S. Patent May 17, 2016 Sheet 4 of 5 US 9,342,312 B2

FROMFIG. 4A
{1 i i
[a i
P j]
| !
§ t
| EU Instr nd
g ElU_Instr n21
| FETCH INSTRUCTIONS EU_nstr_n2.2
§ EU Instr nd3
§ EU_Instr_n24
| i
| ¥
| insir_m&_EU
|
| fnelr mi0 EU
| i
{ ¥
! EY Instr n3
: EU_Instr_n3.1
| EU_lnshr n3.2
|]
instr_m11 Instr_mii
Instr_m12 Instr_mie
instr_m13 netr_ m1i3
¥

FIG. 4B

U.S. Patent May 17, 2016 Sheet 5 of 5 US 9,342,312 B2
FROM
INSTRUCTION
MEMORY
110~] INSTRUCTION
FETCH UNIT
¥ i
114~] INSTRUCTION INSTRUCTION | -702
DECODE UNIT FETCH/STORE UNIT
102 -1 EXECUTION UNIT EXECUTION UNIT
STORED
INSTRUCTIONS | 1. 4p4
N
212
FIG. 7
FROM
INSTRUCTION
MEMORY
L
M0~ stRUCTION
FETCH UNIT EXECUTION
T UNIT
INSTRUCTION
= STORED - 104
Y)
| EXECUTION UNIT fe-» MERGE UNIT fe-s 212
102 Y
802 FIG. 8

US 9,342,312 B2

1

PROCESSOR WITH INTER-EXECUTION
UNIT INSTRUCTION ISSUE

BACKGROUND

Microprocessors (processors) are instruction execution
devices that are applied, in various forms, to provide control,
communication, data processing capabilities, etc. to an incor-
porating system. Processors include execution units to pro-
vide data manipulation functionality. Exemplary execution
units may provide arithmetic operations, logical operations,
floating point operations etc. Processors invoke the function-
ality of the execution units in accordance with the require-
ments of the instructions executed by the processor.

SUMMARY

A processor and execution units providing inter-execution
unit instruction issue are disclosed herein. In one embodi-
ment, a processor includes an instruction storage memory, a
processor core, and an instruction merge unit. The processor
core includes a plurality of execution units that are coupled to
the instruction storage memory. A first of the execution units
is configured to execute instructions provided from the
instruction storage memory via a first instruction path, and to
execute instructions provided by a second of the execution
units via a second instruction path. The second of the execu-
tion units is configured to execute instructions provided from
the instruction storage memory, and to provide instructions
for execution to the first of the execution units via the second
instruction path. The instruction merge unit is configured to
merge the instructions provided via the first and second
instruction paths into a stream of instructions to be executed
by the first execution unit.

In another embodiment, a processor includes a primary
execution unit, and a secondary execution unit coupled to the
primary execution unit. The secondary execution unit is con-
figured to provide instructions to the primary execution unit
for execution by the primary execution unit in conjunction
with execution of a given instruction by the secondary execu-
tion unit.

In a further embodiment, a processor includes a processor
core, an instruction store, and a merge unit. The processor
core includes a first execution unit and a second execution
unit. The first execution unit includes registers and function
logic, and is configured to execute instructions. The instruc-
tion store is configured to store instructions for execution by
the first execution unit. The second execution unit includes
registers and function logic, and is configured to: execute
instructions, and to provide instructions to the first execution
unit for execution in conjunction with an instruction executed
by the second execution unit. The merge unit is coupled to the
first execution unit and the second execution unit. The merge
unit is configured to assign a priority value to each of the
instruction store and the second execution unit, and to insert
instructions from the instruction store and the second execu-
tion unit into a stream of instructions to be executed by the
first execution unit in accordance with the assigned priorities.
The merge unit is also configured to assert a wait signal to the
first execution unit in conjunction with inserting an instruc-
tion from the second execution unit into the instruction stream
to enable execution of the instruction from the second execu-
tion unit by the first execution unit.

BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of exemplary embodiments of
the invention, reference will now be made to the accompany-
ing drawings in which:

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 1 shows a block diagram of a processor in accordance
with various embodiments;

FIG. 2 shows a block diagram of an execution unit in
accordance with various embodiments;

FIG. 3 shows an instruction that includes a field specifying
inter-execution unit instruction issue in accordance with vari-
ous embodiments;

FIGS. 4A-4B shows execution interoperation including
inter-execution unit instruction issue in accordance with vari-
ous embodiments;

FIG. 5 shows a block diagram of execution units in a
processor and data exchanges performed during execution
unit interoperation in accordance with various embodiments;

FIGS. 6-7 show block diagrams of exemplary execution
units in a processor providing inter-execution unit instruction
issue in accordance with various embodiments; and

FIG. 8 shows a block diagram of a processor including a
merge unit that manages integration of instructions issued
from different sources in accordance with various embodi-
ments.

NOTATION AND NOMENCLATURE

Certain terms are used throughout the following descrip-
tion and claims to refer to particular system components. As
one skilled in the art will appreciate, companies may refer to
a component by different names. This document does not
intend to distinguish between components that differ in name
but not function. In the following discussion and in the
claims, the terms “including” and “comprising” are used in an
open-ended fashion, and thus should be interpreted to mean
“including, but not limited to . . . ” Also, the term “couple” or
“couples” is intended to mean either an indirect or direct
electrical connection. Thus, if a first device couples to a
second device, that connection may be through a direct elec-
trical connection, or through an indirect electrical connection
via other devices and connections. Further, the term “soft-
ware” includes any executable code capable of running on a
processor, regardless of the media used to store the software.
Thus, code stored in memory (e.g., non-volatile memory),
and sometimes referred to as “embedded firmware,” is
included within the definition of software. The recitation
“based on” is intended to mean “based at least in part on.”
Therefore, if X is based on Y, X may be based onY and any
number of other factors.

DETAILED DESCRIPTION

The following discussion is directed to various embodi-
ments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
scope of the disclosure, including the claims. In addition, one
skilled in the art will understand that the following descrip-
tion has broad application, and the discussion of any embodi-
ment is meant only to be exemplary of that embodiment, and
not intended to intimate that the scope of the disclosure,
including the claims, is limited to that embodiment.

In conventional processor architectures, interaction
between processing units is typically limited to data/status
transfer and issuance of instructions from a CPU to coproces-
sor. In such architectures, transfer of data and/or status
between execution units is accomplished via execution of
dedicated data movement instructions, such as load and store.
Because coprocessors may be restricted to an instruction set
focused on a particular application, such floating point com-
putation, graphics computation, etc., functionality not sup-

US 9,342,312 B2

3

ported by the coprocessor is provided by a CPU that executes
instructions provided from instruction storage such as cache
or instruction memory. However, requiring the execution of
additional instructions to transfer data and/or status between
execution units increases processor power consumption, pro-
gram execution time, and storage. Similarly, limited execu-
tion interaction between execution units unnecessarily limits
overall processor performance and increases power con-
sumption by requiring that CPU support of a coprocessor be
initiated from an instruction stream provided from memory.

Embodiments of the processor disclosed herein include
execution units that are capable of accessing functionality in
other execution units by issuing instructions directly from one
execution unit to another. For example, an execution unit
dedicated to vector processing can issue logical operation
instructions to a different execution that supports such opera-
tions in situations where logical operations are needed to
support a vector operation. Thus, in some embodiments of the
present disclosure, functionality of each execution unit can be
limited to reduce hardware cost, but overall processor perfor-
mance improved by allowing the execution units to access
needed functionality provided by other execution units.
Embodiments further improve performance by allowing
execution units to directly access registers of other execution
units without use of dedicated data movement instructions.
For example, operands to be processed in an instruction
executed by one execution unit can be accessed in registers of
a different execution unit in the course of execution of the
instruction. Similarly, a result of execution of the instruction
can be stored in aregister of'a different execution in the course
of execution of the instruction.

FIG. 1 shows a block diagram of a processor 100 in accor-
dance with various embodiments. The processor 100 includes
a plurality of execution units 102, 104, 106, 108. Other
embodiments may include a different number of execution
units. The processor 100 also includes an instruction fetch
unit 110, a data access unit 112, and one or more instruction
decode units 114. Some embodiments further include one or
more instruction buffers 116. In some embodiments of the
processor 100, two or more of the execution units 102-108
may be components of a single processor core. The processor
100 may also include other components and sub-systems that
are omitted from FIG. 1 in the interest of clarity. For example,
the processor 100 may include data/instruction storage
resources, such as random access memory, communication
interfaces and peripherals, timers, analog-to-digital convert-
ers, clock generators, debug logic, etc.

One or more of the execution units 102-108 can execute a
complex instruction. For example, an execution unit (EU)
102-108 may be configured to execute a fast Fourier trans-
form (FFT) instruction, execute a finite impulse response
(FIR) filter instruction, an instruction to solve a trigonometric
function, an instruction to evaluate a polynomial, an instruc-
tion to compute the length of a vector, etc. The execution units
102-108 allow complex instructions to be interrupted prior to
completion of the instruction’s execution. While an execution
unit (e.g., EU 108) is servicing an interrupt, other execution
units (EU 102-106) continue to execute other instructions.
The execution units 102-108 may synchronize operation
based on a requirement for a result and/or status generated by
a different execution unit. For example, an execution unit 102
that requires a result value from execution unit 104 may stall
until the execution unit 104 has produced the required result.
In some embodiments, one execution unit (e.g., 102) may
serve as a primary execution for the processor 100, and other
execution units (e.g., 104-108) may serve as secondary
execution units.

20

40

45

4

To facilitate efficient execution of complex and other data
manipulation and processing instructions, an execution unit
(e.g., 108) can access data and/or functionality of a different
one or more of the execution units 102-106 as part of or in
conjunction with execution of the instruction. For example, in
executing an instruction, the execution unit 104 may access
operands stored in execution unit 102, and/or store a result of
processing the operands in execution unit 102. Similarly, an
execution unit (e.g., 104) can execute status dependent
instructions and instruction sequences based on status stored
in different ones of the execution units (e.g., 102). Thus, a
status dependent program flow control instruction executed
by the execution unit 104 can be predicated on status stored in
a different execution unit without requiring addition instruc-
tions to transfer the status to execution unit 104. An execution
unit (e.g., 104) can access functionality of a different execu-
tion unit (e.g., 102) by issuing instructions to the execution
unit 102 for execution. The instructions issued by execution
104 may be stored in execution unit 104 for issuance that is
triggered by execution, in execution unit 104, of an instruc-
tion requiring the functionality provided by execution of the
stored instructions in execution unit 102. Such instruction
issuance may be triggered by a dedicated field of the instruc-
tion executed by execution unit 104, or by information stored
in execution unit 104 indicating that and when stored instruc-
tions are to be issued to execution unit 102. For example, a
state machine controlling execution of a given instruction in
execution unit 104 may be arranged to issue stored instruc-
tions at a predetermined state of execution of the given
instruction. Providing such interaction directly between
execution units 102-108 allows processor components, such
as memories, bus interfaces, etc. that are not involved in the
interaction to stay in the current power state or to transition to
a reduced power state, thereby reducing overall processor
power consumption, without reduction in processor function-
ality.

The instruction fetch unit 110 retrieves instructions from
storage (not shown) for execution by the processor 100. The
instruction fetch unit 110 may provide the retrieved instruc-
tions to a decode unit 114. The decode unit 114 examines
instructions, locates the various control sub-fields of the
instructions, and generates decoded instructions for execu-
tion by the execution units 102-108. Instruction dispatch
logic may be associated with the decode unit 114. As shown
in FIG. 1, multiple execution units may receive decoded
instructions from an instruction decoder 114. In some
embodiments, an instruction decoder 114 may be dedicated to
one or more execution units. Thus, each execution unit 102-
108 may receive decoded instructions from an instruction
decoder 114 coupled to only that execution unit, and/or from
an instruction decoder 114 coupled to a plurality of execution
units 102-108. Some embodiments of the processor 100 may
also include more than one fetch unit 110, where a fetch unit
110 may provide instructions to one or more instruction
decoder 114.

Embodiments of the processor 100 may also include one or
more instruction buffers 116. The instruction buffers 116
store instructions for execution by the execution units 102-
108. An instruction buffer 116 may be coupled to one or more
execution units 102-108. An execution unit may execute
instructions stored in an instruction buffer 116, thereby allow-
ing other portions of the processor 100, for example other
instruction buffers 116, the instruction fetch unit 110, an
instruction storage (not shown), etc., to be maintained in a
low-power or inoperative state. An execution unit may lock or
freeze a portion of an instruction buffer 116, thereby prevent-
ing the instructions stored in the locked portion of the instruc-

US 9,342,312 B2

5

tion buffer 116 from being overwritten. Execution of instruc-
tions stored in an instruction buffer 116 (e.g., alocked portion
of an instruction buffer 116) may save power as no reloading
of the instructions from external memory is necessary, and
may speed up execution when the execution unit executing
the instructions stored in the instruction buffer 116 is exiting
a low-power state. An execution unit may call instructions
stored in a locked portion of an instruction buffer 116 and
return to any available power mode and/or any state or
instruction location. The execution units 102-108 may also
bypass an instruction buffer 116 to execute instructions not
stored in the instruction buffer 116. For example, the execu-
tion unit 104 may execute instructions provided from the
instruction buffer 116, instructions provided by the instruc-
tion fetch unit 110 that bypass the instruction buffer 116,
and/or instructions provided by an execution unit 102, 106-
108.

The instruction buffers 116 may also store, in conjunction
with an instruction, control or other data that facilitate
instruction execution. For example, information specifying a
source of an instruction execution trigger, trigger conditions
and/or trigger wait conditions, instruction sequencing infor-
mation, information specifying whether a different execution
unit or other processor hardware is to assist in instruction
execution, etc. may be stored in an instruction buffer 116 in
conjunction with an instruction.

The data access unit 112 retrieves data values from storage
(not shown) and provides the retrieved data values to the
execution units 102-108 for processing. Similarly, the data
access unit 112 stores data values generated by the execution
units 102-108 in a storage device (e.g., random access
memory external to the processor 100, register of a peripheral
device, etc.). Some embodiments of the processor 100 may
include more than one data access unit 112, where each data
access unit 112 may be coupled to one or more of the execu-
tion units 102-108.

The execution units 102-108 may be configured to execute
the same instructions, or different instructions or any mix of
same and different instructions. For example, given an
instruction set that includes all of the instructions executable
by the execution units 102-108, in some embodiments of the
processor 100, all or a plurality of the execution units 102-108
may be configured to execute all of the instructions of the
instruction set. Alternatively, some execution units 102-108
may execute only a sub-set of the instructions of the instruc-
tion set, or may execute a different instruction set. At least one
of the execution units 102-108 is configured to execute a
complex instruction that requires a plurality of instruction
cycles to execute.

Each execution unit 102-108 is configured to control
access to the resources of the processor 100 needed by the
execution unit to execute an instruction. For example, each
execution unit 102-108 can enable power to an instruction
buffer 116 if the execution unit is to execute an instruction
stored in the instruction buffer 116 while other instruction
buffers, and other portions of the processor 100, remain in
their current power state, which can be a low-power state.
Thus, each execution unit 102-108 is able to independently
control access to resources of the processor 100 (power, clock
frequency, etc.) external to the execution unit needed to
execute instructions, and to operate independently from other
components of the processor 100.

FIG. 2 shows a block diagram for an execution unit 108 in
accordance with various embodiments. The block diagram
and explanation thereof may also be applicable to embodi-
ments of the execution units 102-106. The execution unit 108
includes function logic 202, registers 204, and instruction

20

40

45

55

6

execution logic 210. The function logic 202 includes the
arithmetic, logical, and other data manipulation resources for
executing the instructions relevant to the execution unit 108.
For example, the function logic may include adders, multi-
pliers, shifters, logical functions, etc. for integer, fixed point,
and/or floating point operations in accordance with the
instructions to be executed by the execution unit 108.

The registers 204 include data registers 206 and status
registers 208. The data registers 206 store operands and/or
pointers to operand to be processed by, and results produced
by, the function logic 202. The data registers may also store
addresses, control information, configuration information,
etc. The number and/or size of registers included in the data
registers 206 may vary across embodiments. For example,
one embodiment may include 16 16-bit data registers, and
another embodiment may include a different number and/or
width of registers. The status registers 208 include one or
more registers that store state information (condition codes)
produced by operations performed by the function logic 202
and/or store instruction execution and/or execution unit state
information. State information stored in a status register 208
may include a zero result indicator, a carry indicator, result
sign indicator, overflow indicator, interrupt enable indicator,
instruction execution state, etc.

The instruction execution logic 210 controls the sequenc-
ing of instruction execution in the execution unit 108. The
instruction execution logic 210 may include one or more state
machines that control the operations performed by the func-
tion logic 202 and transfer of data between the registers 204,
the function logic 202, other execution units 102-106, the data
access unit 112, and/or other components of the processor
100 in accordance with an instruction being executed. For
example, the instruction execution logic 210 may include a
state machine or other control system that sequences the
multiple successive operations of a complex instruction being
executed by the execution unit 108.

As part of sequencing instruction execution, the instruction
execution logic 210 can initiate and control issuance of
instructions to the execution unit 102 and/or other execution
units (e.g., execution units 102-106). The instruction execu-
tion logic 210 includes stored instructions 212 that the
instruction execution logic 210 may issue to the execution
unit 102 or a different execution unit to, for example, support
execution of an instruction being executed by execution unit
108. For example, if execution of an instruction in execution
unit 108 requires some particular operations that can only be
performed by execution unit 102, in addition to operations
that can be performed by execution unit 108, then the stored
instructions 212 may include instructions that instruction
execution logic 210 causes to be issued to execution unit 102
for performance of the particular operations. To optimize
performance, the instruction execution logic 210 may issue
the instructions with timing that results in generation of result
by the different execution unit at or prior to a state of execu-
tion (or execution pipeline state) of the execution unit 108 in
which the result is needed. Information applied by the instruc-
tion execution logic 210 to direct instruction issue may be
derived from a field of an instruction being executed by the
execution unit 108, included in a state machine, provided by
previously executed instructions, or otherwise stored in or
provided to the instruction execution logic 210.

The stored instructions 212 may be stored in volatile or
non-volatile memory, registers, or coded in programmable or
fixed logic circuitry. Instructions may be stored at any time
prior issuance. For example, instructions may be pre-pro-
grammed at manufacture, loaded at run-time, etc. In some

US 9,342,312 B2

7

embodiments, the stored instructions 212 may be located
outside the issuing execution unit.

Similarly, the instruction execution logic 210 controls
access of registers 204 of other execution units as part of
instruction execution sequencing. Registers of execution
units to be accessed in executing an instruction may be iden-
tified by a field of the instruction being executed, coded into
an instruction execution state machine, or stored in a register
or memory of the execution unit 108 at any time prior register
access.

The execution unit 108 also includes resource control logic
214. The resource control logic 214 requests access to the
various resources (e.g., storage, power, clock frequency, etc.)
of the processor 100 that the execution unit 108 uses to
execute an instruction. By requesting processor resources
independently for each execution unit 102-108, the power
consumed by the processor 100 may be reduced by placing
only components of the processor 100 required for instruction
execution by an active execution unit 102-108 in an active
power state. Furthermore, execution units 102-108 not
executing instructions may be placed in a low-power state to
reduce the power consumption of the processor 100.

FIG. 3 shows an instruction 300 executable by at least one
of the execution units of the processor 100. The instruction
300 includes a field 302 specifying inter-execution unit
instruction issue in accordance with various embodiments.
Information provided in the EUIA field 302 may directly or
indirectly (e.g., via pointer) specify whether an instruction is
to be issued, to what execution unit the instruction is to issued,
what instruction is to be issued, timing of instruction issue,
and/or parameters of an instruction to be issued, etc. Some
embodiments of the instruction 300 may include more than
one EUIA field 302 where each EUIA field 302 is directed to
issuance of one or more instructions to an execution unit.

FIGS. 4A-4B show an example of execution interoperation
including inter-execution unit instruction issue in accordance
with various embodiments. In FIGS. 4A-4B, instructions
Instr_m1 to Instr_m4 are fetched and executed by execution
unit (EU) 102, which may be the CPU of the processor 100.
Instruction EU_Instr_n1 is fetched next and directed to EU
104 for execution. EU 104 transitions through execution
states EU_Instr n.1.1 to EU_Instr_nl1.7 while executing
instruction EU_Instr n1. EU 104 issues the instructions
Instr m5_EU to Instr_m8_EU to EU 102 for execution. For
example, EU 104 may issue the instructions Instr_m5_EU to
Instr_m8_EU from stored instructions 212 in conjunction
with execution state EU_Instr nl1.7. The instructions
Instr_m5_EU to Instr_m8_EU may, for example, cause EU
102 to further process a result of execution of the instruction
EU_Instr_n1 while allowing instruction memories, bus com-
ponents, etc. of the processor 100 to remain in a reduced
power state. EU 104 next executes instruction EU_Instr_n2
and issues instructions Instr m9_EU to Instr m10_EU for
execution by EU 102, and finally executes instructions
EU_Instr n3 and issues instructions Instr m11_EU to
Instr_m13_EU for execution by EU 102.

FIG. 5 shows a block diagram of execution units 102, 104
in the processor 100 and data exchanges performed during
execution unit interoperation in accordance with various
embodiments. The executionunit 104, for example, can trans-
fer data between the function logic 202 of the execution unit
104 and the registers 204 of the execution unit 102, and/or
transfer data between the registers 204 of the execution unit
102 and the registers 204 of the execution unit 104. Such data
transfers may be performed during instruction execution
without additional cycle overhead, as would be required to
transfer data between execution units using a different

5

10

15

20

25

30

35

40

45

50

55

60

65

8

instruction (e.g., a load or store instruction). The transfers
include providing data and/or status to the function logic 202
from the data registers 206 and/or status registers 208, and/or
providing processing results and/or status to data registers
206 and/or status registers 208.

FIG. 5 also shows that the execution units 102, 104 can
transfer data directly between the registers 204 of the differ-
ent execution units. Accordingly, the execution units can per-
form a context switch by moving register contents from one
execution unit to another. Thus, if the execution unit 102
needs to store context for an interrupt service, task switch,
etc., and the registers of execution unit 104 are not in use, then
the execution unit 102 can transfer the contents one or more of
the registers 204 of the execution unit 102 to registers 204 of
the execution unit 104. Registers of the execution unit 104
may be cleared in conjunction with the transfer to avoid
residual data. Moving the contents of the registers 204 of the
execution unit 104 to the registers 202 of the execution 102
restores the context. Thus, embodiments of the processor 100
reduce the energy and time expended in context switching by
reducing the memory accesses required to store and restore
register contents.

FIG. 6 shows a block diagram of execution units 102, 104
in the processor 100 providing inter-execution unit instruc-
tion issue in accordance with various embodiments. In FIG. 6,
the execution unit 104 includes stored instructions 212. The
execution unit 104 may be triggered to issue instructions to
the execution unit 102 by execution of a particular instruction
in the execution unit 104 that requires operations not provided
by the execution unit 104. The particular instruction may
specify the instructions to be issued, destination, parameters,
etc., or such information may have been previously stored in
the execution unit 104. In FIG. 6, the instructions issued by
the execution unit 104 are routed to the instruction fetch unit
110, and are interleaved with instructions provided from an
instruction memory, decoded by the instruction decode unit
114, and provided to the execution unit 102 for execution. In
the embodiment of FIG. 6, the execution unit 104 may issue
each instruction to the execution unit 102 individually.

FIG. 7 shows a block diagram of an alternative arrange-
ment of execution units 102, 104 in the processor 100 pro-
viding inter-execution unit instruction issue in accordance
with various embodiments. In the embodiment of FIG. 7,
instructions issued by the execution unit 104 are directed to
the instruction fetch/store unit 702 and stored (e.g., in a fetch
buffer or cache). Thus, the execution unit 104 may issue a
number of instructions for execution by the execution unit
102, rather than issuing instructions individually as in the
embodiment of FIG. 6. The instructions issued by the execu-
tion unit 104 are output by the fetch unit 702 and interleaved
with instructions provided from instruction memory via the
fetch unit 110, decoded by the decode unit 114, and provided
to the execution unit 102 for execution. Instructions stored in
the fetch/store unit 702 may be repeatedly issued therefrom as
needed to the execution unit 102 thereby reducing processor
100 energy consumption. Repeated issue of instructions from
the instruction fetch/store unit 702 may be controlled by the
execution unit 104.

In some embodiments of the processor 100, an execution
unit may indirectly issue instructions for execution by a dif-
ferent execution unit. For example, referring to FIG. 7, the
execution unit 104 may provide an address value and number
of instructions (or other information indicating what instruc-
tions are being issued) to the fetch unit 702. The fetch unit 702
may retrieve the instructions from storage, if the instructions

US 9,342,312 B2

9

are not already stored in the fetch unit 702, and provide the
instructions to the execution unit 102 as described with regard
to FIG. 7.

FIG. 8 shows a block diagram of a portion of the processor
100 including a merge unit 802 that manages integration of
instructions issued from different instruction sources in
accordance with various embodiments. The merge unit 802 is
coupled to the execution units 102, 104 and the instruction
fetch unit 110. The merge unit 802 manages the merger of
instructions provided from multiple instruction paths. In FIG.
8, one instruction path provides instructions to execution unit
102 from an instruction memory, and another instruction path
provides instructions by issued by execution unit 104 to
execution unit 102.

The merge unit 802 may apply a variety of techniques to
manage the merger or interleaving of instructions provided
via the different instruction paths. In one embodiment, the
merger unit 802 may control the fetch unit 110 and/or the
execution unit 104, and cause instructions to be provided to
execution unit 102 from either instruction path. The merger
unit 802 receives information from the execution unit 102 that
indicates the execution state of execution 102. For example,
execution unit 102 may indicate to the merge unit 802
whether the execution unit 102 is stalled, in a wait condition
that inhibits execution of instructions from one or the other
instruction path, etc. The execution unit 104 may indicate to
the merger unit 802 that execution unit 104 is ready to issue
instructions to execution unit 102.

Based on the information received from the execution units
102, 104 the merge unit 802 may control the execution units
102, 104 and the fetch unit 110 to direct instructions from a
selected instruction source (e.g., instruction memory, execu-
tion unit 102, etc.) to execution unit 102 via the instruction
path used by the source to provide instructions. For example,
if the execution unit 102 is in a stalled state or is idle waiting
for a time interval to expire or an event to occur, then the
merge unit 802 may indicate to the execution unit 104 that
instructions may be issued to the execution unit 102. In some
embodiments, if execution unit 104 indicates to the merge
unit 802 that the execution unit 104 is ready to issue instruc-
tions to the execution unit 102, then the merge unit 802 may
assert a control signal to the execution unit 102 that causes the
execution unit 102 to enter a stalled or idle state. Thereafter,
the merge unit 802 may direct the execution unit 104 to issue
instructions to the execution unit 102.

In some embodiments of the processor 100, the merge unit
802 may assign a priority to each instruction path or instruc-
tion source, and enable instructions to the execution unit 102
from each instruction path in accordance with the assigned
priorities. For example, based on the assigned priorities, the
merge unit 802 may allow instructions from a lower priority
instruction path to be provided to the execution unit 102 only
if no instructions are available via a higher priority instruction
path, or the execution unit 102 is not enabled (e.g., idle or
stalled) to execute instructions provided via the higher prior-
ity instruction paths.

The merge unit may also issue an interrupt to the execution
unit 102, the service of which causes the execution unit 102 to
execute instructions provided via a particular instruction
path. The merge unit 802 may issue such an interrupt to the
execution unit 102 when the execution unit 104 indicates that
instructions are to be issued to the execution unit 102 by the
execution unit 104. Alternatively, the merge unit 802 may
assert a wait signal to the execution unit 102 that causes the
execution unit 102 to stall or enter an idle state with respect
execution of instructions from one instruction path (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

10

instructions from the instruction memory), and allows
instructions issued by execution unit 104 to be executed.

In some embodiments, merge unit 802 may analyze the
instructions provided via an instruction path to determine
how many instructions from the path should be executed in
sequence. For example, the instructions may include a field
that specifies how many instructions are to be atomically
executed, where atomic execution refers to execution without
interruption. Similarly, the instruction source (e.g., execution
unit 104) may indicate to the merge unit 802 how many
instructions issued from the instruction source are to be
executed without interruption.

The above discussion is meant to be illustrative of the
principles and various embodiments of the present invention.
Numerous variations and modifications will become apparent
to those skilled in the art once the above disclosure is fully
appreciated. For example, while various operations and func-
tions of the processor 100 have been described with reference
to particular execution units, it is to be understood that the
described operations and functions are not limited to any
particular execution units. It is intended that the following
claims be interpreted to embrace all such variations and modi-
fications.

What is claimed is:

1. A processor, comprising:

an instruction storage memory;

a processor core, comprising:

a plurality of execution units coupled to the instruction
storage memory, wherein:

a first of the execution units is configured to execute
instructions provided from the instruction storage
memory via a first instruction path, and to execute
instructions provided by a second of the execution
units via a second instruction path; and

the second of the execution units is configured to
execute instructions provided from the instruction
storage memory, and to provide instructions for
execution to the first of the execution units via the
second instruction path; and

an instruction merge unit configured to merge the instruc-

tions provided via the first and second instruction paths
into a stream of instructions to be executed by the first
execution unit.

2. The processor of claim 1, wherein each of the execution
units comprises registers, and the second of the execution
units is configured to access registers of the first of the execu-
tion units.

3. The processor of claim 2, wherein the second of the
execution units is configured to move data between registers
of'the first of the execution units and registers of the second of
the execution units.

4. The processor of claim 2, wherein at least one of the
registers of the first of the execution units that is accessed by
the second execution unit is a status register.

5. The processor of claim 2, wherein the second of the
execution units is configured to access a register of the first of
the execution units in conjunction with execution of an
instruction by the second of the execution units.

6. The processor of claim 2, wherein the second of the
execution units is configured to, in conjunction with execu-
tion of an instruction:

retrieve an operand from the first of the execution units to

be processed by execution of an instruction;

store a result of instruction execution in the first of the

execution units; or

store, in the first of the execution units, status produced by

execution of an instruction.

US 9,342,312 B2

11

7. The processor of claim 2, wherein the second of the
execution units is configured to determine a location of data
stored in the first of the execution unit to access in conjunction
with execution of a given instruction based on information
conveyed by the given instruction or information provided to
the second of the execution units prior to execution of the
given instruction.

8. The processor claim 2, wherein the first of the execution
units is configured perform a context switch comprising
simultaneously moving contents of a plurality of registers of
the first of the execution units to registers of the second of the
execution units.

9. The processor of claim 2, wherein the first of the execu-
tion units is configured to store a result of execution of an
instruction provided via the second instruction path in a reg-
ister of the second of the execution units.

10. The processor of claim 1, wherein the second of the
execution units is configured to provide the instructions to the
first of the execution unit for execution based on execution of
a trigger instruction in the second of the execution units, and
wherein the instructions provided to the first of the execution
units are stored in the second of the execution units prior to
execution of the trigger instruction.

11. The processor of claim 1, wherein the second of the
execution units is configured to execute, responsive to execu-
tion of a given instruction, an instruction stored in the second
execution prior to execution of the given instruction.

12. The processor of claim 1, further comprising an instruc-
tion bufter configured to:

provide instructions to the first of the execution units; and

receive and store instructions provided via the second

instruction path for subsequent execution by the first of
the execution units.

13. The processor of claim 12, wherein the instruction
buffer is configured to:

store merge and execution control data along with:

an individual instruction; or
a block of instructions.

14. The processor of claim 1, wherein the second of the
execution units is configured to provide the instructions for
execution to the first execution unit by transferring informa-
tion indicative of a location of the instructions to an instruc-
tion fetch unit that provides instructions to the first of the
execution units.

15. The processor of claim 1, wherein the merge unit is
configured to assign a priority value to each of the instruction
paths, and to insert instructions from each instruction path
into the stream of instructions based on the assigned priori-
ties.

16. The processor of claim 15, wherein the merger unit is
configured to assign precedence to the first instruction path
unless:

interrupts are disabled in the first of the execution units;

instructions of the second instruction path being executed

by the first of the execution units are atomically concat-
enated; or

the first of the execution units is stalled.

17. The processor of claim 1, wherein the merge unit is
configured to enable execution of instructions from the sec-
ond instruction path by asserting a wait signal to the first of
the execution units in conjunction with inserting an instruc-
tion from the second instruction path into the instruction
stream.

18. A processor, comprising:

a processor core, comprising:

a primary execution unit; and

20

25

30

40

45

50

65

12

a secondary execution unit coupled to the primary
execution unit;

wherein the secondary execution unit is configured to pro-

vide instructions to the primary execution unit for execu-
tion by the primary execution unit in conjunction with
execution of a given instruction by the secondary execu-
tion unit;

wherein:

the primary execution unit comprises registers and the

secondary execution unit comprises registers;

the primary execution unit is configured to transfer oper-

ands from the registers of the secondary execution unit
and transfer results of instruction execution to a register
of the secondary execution unit, and

the secondary execution unit is configured to transfer oper-

ands from the registers of the primary execution unit and
transfer results of instruction execution to a register of
the primary execution unit.

19. A processor, comprising:

a processor core, comprising:

a primary execution unit; and

a secondary execution unit coupled to the primary

execution unit;

wherein the secondary execution unit is configured to provide
instructions to the primary execution unit for execution by the
primary execution unit in conjunction with execution of a
given instruction by the secondary execution unit;
a merge unit coupled to the primary execution unit and the
secondary execution unit, wherein the merge unit is config-
ured to:

merge instructions provided by the secondary execution

unit to the primary execution unit with instructions pro-
vided to the primary execution unit from instruction
memory into a stream of instructions to be executed by
the primary execution unit;

assign a priority value to the secondary execution unit and

the instruction memory and insert instructions provided
from the secondary execution unit and the instruction
memory into the stream in accordance with the assigned
priority values.

20. The processor of claim 19, wherein the merge unit is
configured to enable execution of instructions provided by the
secondary execution unit by asserting a wait signal to the
primary execution unit in conjunction with inserting an
instruction from the secondary execution unit into the stream.

21. A processor, comprising:

a processor core, comprising:

a first execution unit comprising registers and function
logic, and configured to execute instructions; and
a second execution unit comprising registers and func-
tion logic, and configured to:
execute instructions; and
provide instructions to the first execution unit for
execution in conjunction with an instruction
executed by the second execution unit; and

an instruction store configured to store instructions for

execution by the first execution unit;

a merge unit coupled to the first execution unit and the

second execution unit, and configured to:

assign a priority value to each of the instruction store and
the second instruction unit, and to insert instructions
from the instruction store and the second instruction
unit into a stream of instructions to be executed by the
first execution unit in accordance with the assigned
priorities;

assert a wait signal to the first execution unit in conjunc-
tion with inserting an instruction from the second

US 9,342,312 B2
13

execution unit into the instruction stream to enable
execution of the instruction from the second execu-
tion unit by the first execution unit.
22. The processor of claim 21, wherein:
the first execution unit is configured to access a register of 5
the second execution unit as part of execution of an
instruction provided by the second execution unit; and
the second execution unit is configured to access a register
of the first execution unit as part of execution of an
instruction by the second execution unit. 10

#* #* #* #* #*

14

